
education 
sciences

Article

Toward an Innovative Educational Method to Train Students to
Agile Approaches in Higher Education: The A.L.P.E.S.

Jannik Laval 1, Anthony Fleury 2 , Abir B. Karami 3 , Alexis Lebis 2 , Guillaume Lozenguez 2,* , Rémy Pinot 2

and Mathieu Vermeulen 2

����������
�������

Citation: Laval, J.; Fleury, A.;

Karami, A.B.; Lebis, A.;

Lozenguez, G.; Pinot, R.;

Vermeulen, M. Toward an Innovative

Educational Method to Train

Students to Agile Approaches in

Higher Education: The A.L.P.E.S.

Educ. Sci. 2021, 11, 267. https://

doi.org/10.3390/educsci11060267

Academic Editor: Eleanor Dommett

Received: 3 May 2021

Accepted: 24 May 2021

Published: 28 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 INSA Lyon, Université Lyon, Université Lumière Lyon 2, Université Claude Bernard Lyon 1, DISP, EA4570,
69676 Bron, France; jannik.laval@univ-lyon2.fr

2 IMT Lille Douai, Institut Mines-Télécom, Université Lille, Centre for Digital Systems, F-59000 Lille, France;
anthony.fleury@imt-lille-douai.fr (A.F.); alexis.lebis@imt-lille-douai.fr (A.L.);
remy.pinot@imt-lille-douai.fr (R.P.); mathieu.vermeulen@imt-lille-douai.fr (M.V.)

3 Smart and Sustainable Cities Team, Faculty of Management, Economics & Sciences, Lille Catholic University,
F-59000 Lille, France; abir.karami@univ-catholille.fr

* Correspondence: guillaume.lozenguez@imt-lille-douai.fr

Abstract: Introduced in 2013, the A.L.P.E.S. approach (AgiLe aPproaches in higher Education Studies)
aims to apply agile practices to teaching. Agile approaches are project management practices for
IT development. More pragmatic than traditional methods, they allow to be closer to the applicant
and to involve him/her as much as possible. They offer a great reactivity and a good adaptation to
best meet the needs. They are used today in a large part of IT companies. Largely inspired by agile
approaches, the A.L.P.E.S. approach allows the teaching of project management in a transverse way
to a main course. It makes teaching more flexible and more adapted to the students. In this article,
we describe the approach. We describe the tools, the process of creating a course, and the process of
running a course.

Keywords: teaching methods; pedagogical innovation; creativity; pedagogy support

1. Introduction

In 2001, a group of leading IT developers designed and wrote the agile manifesto [1]. This
manifesto aimed to propose a paradigm for software development around four founding
principles as an alternative to widely used classical IT project management methods (Such
as the v-Model for Software Development [2]). Today, agile approaches and methods
(with, as an example, the well-known SCRUM [3]) based on this manifesto are widespread
in the world of IT development but also in other sectors of the enterprise. Therefore, it
would seem judicious to initiate future engineers (as project contributors for IT but also
in other domains) to agile approaches. The idea we defend is not only teach agile project
management, but to integrate it into a pedagogical approach.

As project-based pedagogy is widely used in higher education and has many intrinsic
qualities, its adoption for the design of such a modality seems interesting. In fact, the
question of a project-based pedagogy integrating the concepts of agile approaches is acutely
raised: (i) how could agile approaches be integrated into project-based learning? (ii) could
agile approaches be taught through project-based pedagogy?

In this article, we aim to focus on two hypotheses: (1) a course in higher education
can be transformed to a project-based course that introduces agile concepts to students in
addition to main concepts; (2) a well-defined model and the associated method can assist
teachers in redesigning their courses to introduce agile concepts.

To this end, a model and the associated method to design agile project-based courses
have been proposed to the French community [4]. This approach has been tested, among
other schools and universities, at Mines Douai, an engineering school, since September

Educ. Sci. 2021, 11, 267. https://doi.org/10.3390/educsci11060267 https://www.mdpi.com/journal/education

https://www.mdpi.com/journal/education
https://www.mdpi.com
https://orcid.org/0000-0002-0175-3181
https://orcid.org/0000-0003-1972-5629
https://orcid.org/0000-0003-2104-8671
https://orcid.org/0000-0001-6875-7702
https://www.mdpi.com/article/10.3390/educsci11060267?type=check_update&version=1
https://doi.org/10.3390/educsci11060267
https://doi.org/10.3390/educsci11060267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/educsci11060267
https://www.mdpi.com/journal/education


Educ. Sci. 2021, 11, 267 2 of 17

2014 in a course on database management (computer science), and at the University of
Lyon 2. The results obtained validated its value both at the student and teacher levels [5].

On the strength of this positive feedback, we then informed and trained volun-
teer teachers and applicants to the approach. Several of them adopted and adapted the
A.L.P.E.S. in their teaching. Building on this expertise, this paper proposes a presentation
of A.L.P.E.S. through classical agile notions and tools (mostly from SCRUM) integrated in a
teaching purpose.

The paper is organized as follows. After this introduction, we describe the context
of the study in Section 2. In Section 3, we describe the tool philosophy used to create an
A.L.P.E.S. course. Section 4 presents the processes to build and to follow a course. Section 5
gives some suggestions and advice on how to apply the method. A case study of the
creation of a course from scratch is detailed in Section 6. We finish the paper with the
conclusion in Section 7.

2. Context

To develop an approach that teachers can understand and use, it was necessary to re-
view experiences in Project-Based Learning (PBL) [6–8] and agile project management [3,9].
On the one hand, the integration of agile approaches in education could have many ad-
vantages comparatively to the advantages of software development. On the other hand,
PBL is widely used in many forms in higher education and would take benefice from the
integration of agile notions.

2.1. Project-Based Learning

Project-Based Learning (PBL) is a model that organizes learning around projects.
Projects in education is defined as complex tasks, based on challenging problems, that
involve students in design, problem-solving, decision-making, or investigative activities [6].
In such a project, a student works alone or they form a project group autonomously with
regard to the teacher during a determined period of time. A project ends with the delivery
of a realistic product, document, report or presentation.

In the last two decades, PBL continued to gain in success and popularity in higher
education. This method is well accepted by teachers, mainly because most of the projects
are based on authentic content and situations. Thus, PBL aims to prepare students to
realistic problems. However, as software development demonstrates it, there are many
ways to manage projects.

2.2. Agile Project Management

Agile Manifesto [1] lays the foundation for a new paradigm for computer software
or IT development. Agile approaches for project management were born from a need
in computer science to continuously adapt projects to the client’s and/or users’ needs,
emphasizing the human, and human interactions, at the centre of the project. Agile project
management needs concepts and methods that assists the different participants (designers,
developers, end users, etc.) to communicate during the phases of the project and to question
the next developments to perform.

To develop the agile principles, methods are designed like SCRUM [3] to assist devel-
opers and project managers to create an agile experience. SCRUM provides a framework
and tools to monitor the progress of the project.

A key feature in agile project management is to permit the teams to develop their
project in an iterative way. The project timeline would be interrupted by several releases,
where the product is fully operational on its developed components. The frequency
of releases would be different from an approach to another. However a common central
difficulty lies in the definition of the project components to develop (User Stories in SCRUM
terminology) in a way to make an iterative process possible.

Tools issued from agile approaches like SCRUM are very interesting and may be used
in a large variety of situations. Mainly, some tools, like planning board, help to organize and



Educ. Sci. 2021, 11, 267 3 of 17

follow the project. They contribute to the understanding of concepts associated with agile
methods. Several of those tools will be selected and included in the pedagogical method.

2.3. Agile Approaches in Higher Education

SCRUM was the basis of some experiments like Lego for SCRUM [10,11] or courses to
teaching software engineering [12]. In these approaches, the goal is to directly teaching
agile project management: it’s the main pedagogical objective of these courses. It seems
difficult to adapt these examples to disciplines other than computer science or IT.

A.L.P.E.S. [4] is an adaptation of these approaches and their associated tools for a
pedagogical approach dedicated to higher education, and this, for different thematic or
disciplinary. This approach is based on the principle of inverted classes and introduces
online documents that can be progressively consulted [13]. Therefore, A.L.P.E.S. lies in a
socio-constructivist approach [14]; and more specifically in the project-based pedagogy
paradigm. Taking benefits from both this paradigm and the ground principles of peer
programming [15], A.L.P.E.S. defines the work sessions in the form of practical work and
emphasizes collaborative work in groups (often in pairs).

However, defining a course in agile-project-based learning approach remains a chal-
lenging process for the teachers. As ’real professional project’, it requires teachers to master
the project-component notion to allow an iterative process (for students’ project and com-
petences in parallel). The remains of this paper focus on providing the basis for the notions
of iterative development and User-Stories (the SCRUM project components) through an
appropriation of agile tools and process in teaching purpose and a presentation, of courses’
creation with examples.

3. A.L.P.E.S. through Agile Notions and Tools

Our method is based on PBL and integrate tools with the respect of the agile mani-
festo. It could be used with different disciplinary and allows teaching agile approaches
in many contexts. We capitalize on more than six years of use of A.L.P.E.S. in different
courses and thus, we propose a method to help teachers in designing their courses with
agile approaches.

Most of the tools presented here are derived from agile projects and more specifically
from SCRUM Method [16]. Several software solutions and web applications are available
permitting to put them in practice. However, this section is more about the description of
the tools philosophy than its implementation throw devices, applications or web services.

3.1. Time Decomposition

Agile Software Development’s main assets come from iterative decomposition of
the software development process. As a result, the first set of tools consists in defining
rules and advises for deadlines and for specific sessions dedicated to development, project
management and team organization.

Sprint: In SCRUM terminologies, Sprint identifies an iteration in Agile Software Devel-
opment. Sprints are processed between two software releases planned at regular
deadlines. It is mainly composed of development sessions between a Sprint Planning
session and a Sprint Review session. The Sprint Planning consists in defining which
component (User Stories) would be developed during the Sprint. The Sprint Review
consists in presenting developed elements ideally with functional demonstrations.
These both sessions that delimit a Sprint include the project stakeholder, generally
the teacher in a pedagogical purpose. A sprint, in A.L.P.E.S., is considered as a course
session. It takes generally 2 or 4 h.

Stand-up Meeting: It represents very short sessions permitting the team to state the
progress, raise problems and distribute the tasks between two development ses-
sions. Agile Software Development advises generally that Stand-up Meetings take
place the first 15 min of a day’s work. It could be referred to as daily meeting. This exer-



Educ. Sci. 2021, 11, 267 4 of 17

cise would be used especially in projects involving a ’large’ student team (4 students
and more) to learn how to coordinate the effort.

Time boxes: It represents the lower level of time decomposition, it aims to regulate devel-
opment sessions. The main idea is that developers or students cannot be concentrated
on their tasks during long sessions without interruption. As unexpected interruptions
(e.g., mails, smartphones, and other social and professional network alerts) become
more and more common and invasive and call for such time decomposition. Time
breaks are scheduled all over a practical session to optimize the efficiency of work
time. A classical model is based on 5 min time break every 25 min of work (Pomodoro
method [17]). Those small-time breaks are used to do anything not related to the
development of the current task while a 100% concentration is expected from the
students in the other 25 min. Then, larger time breaks of 15 min are scheduled every
two hours in case of long teaching courses.

3.2. Project Monitoring

Project monitoring tools permit the team to visualize the direction/goals of the project,
the current project development state and their efficiency. Those tools could simply take
the form of documents in the project directory.

Project-Book: This tool lists all the elements expected to compose the project realization.
Those elements would be enunciated as User Stories (the next subsection goes into
this notion in depth). Project-Book has an equivalent in SCRUM, the backlog product to
state the advancement of the project.

In the end, it should look like the project scope statement. The main difference is that
Backlog product in SCRUM or the Project-Book in teaching scenarios are not required
to be completed at the beginning of the project/course. The document could evolve
during the project development while it provides a vision of the project direction and
goals and a clear definition of the elements to handle, at least for the next release.

From a teaching point of view, course and practical sessions involved in the project
do not have to be completely defined at the beginning. Indeed, SCRUM recommends
that the User Stories of the project should be organized according to the project’s
functionalities, and ordered by priorities. Thus, functionalities with high priority
would be defined with detailed User Stories and developed first. Other functionalities
would be only briefly presented and would match for instance optional notions that
students could acquire during the course. Those functionalities would be detailed
with a list of User Stories to develop only if/when students reach a certain point in
their project development. Then, the evolution could be initiated from the teachers
or from the students, if it is expected that the students take an active role in the
project management.

Planning Boards: Boards are core tools for teams of students to organize their work and
to communicate with teachers. The planning board (Figure 1) is decomposed in
columns representing each Sprint, generally a session for teaching purpose.

Each column contains the User-stories, represented as a Post-it, dedicated to the Sprint.
At a certain time step of the project development, this board permits a clear overview
of what is already done (elements in past sprint) what is actually processed (elements
in the current sprint) and what is planned to be performed later (elements in future
sprint). It allows one to follow the overall progress and gives students visibility on
the course objectives.

The planning board is questioned and updated only during the Sprint Planning session
with the possibility to modify the columns mapping current and future Sprints. The
Sprint Planning contracts on the planning board what the student team will perform
during the next Sprints (generally at the beginning of a course session and for the
remainder of the course session).



Educ. Sci. 2021, 11, 267 5 of 17

Task Boards: The task board (Figure 2), one per student team, containing 3 columns:
TO DO, DOING and DONE. Each column includes the elements (User-Stories or
associated tasks) relatively to their status: not yet investigated, currently processed
or terminated.

DOING column is also composed with a HELP area which is particularly useful for
interaction with the teachers. The main reason the students put items in waiting
status is that they require a teacher to help or to validate.

During a Sprint, Post-its modelling User-Stories and tasks will navigate from one
area to another. The task board allows one to visualize the status of the students in
a session.

s1 s6s5s4s3s2
Un agent crée
un évènement 

User story
User story

User story

User story

User story

User story

User story

User story
User story

User story

User story

Figure 1. An A.L.P.E.S. Planningboard.

To Do Doing Done

Help

Lecture
des
supports

Ecriture
du test

modélisation 
de 
l a̒rchitectureCréation

de la BDD

écriture
des
requêtes SQL

Figure 2. An A.L.P.E.S. Taskboard.

3.3. User-Story

The time decomposition and the project monitoring allows the students to incremen-
tally validate their project development and their competences. In practice, that strongly
depends on a ‘good’ definition of the User-Stories.

In SCRUM approach, a User-Stories represents a component of a software application.
It is represented by a simple sentence that describes the expectation of the component to be
developed. A User-Story illustrates a user’s need. Each User-Story is noted on a Post-it and
will be stored in the Product-Book.

To design a User-Story, the product owner (one of the project development roles,
presented in the next subsection) should start from the “user need” and s/he should write
a sentence with this structure: “As a [role], I want to [do task], so that [a goal of the action]”.
This way, the User-Stories is very close to a test case. The developer/student could play the
specific user “role” and try to do the “task” in order to validate the good development of
the required component(s). The “goal of the action” is also very important. It allows the



Educ. Sci. 2021, 11, 267 6 of 17

developer to have a full comprehension of the purpose of the developed component(s) for
its own satisfaction and for a better interaction of the component(s) in the project.

In order to write correctly a User-Story, we recommend that it should be written
as INVEST:

• Independent: each User-Story should be as independent as possible in order to be able
to do one before the other.

• Negotiable: as long as it has not been started, it should be possible to modify a
User Story.

• Valuable: The User-Story must bring value to the student.

• Estimable: a User Story must be estimable in terms of complexity. This is a rather
complex point because students are learning. It is difficult for them to estimate the
complexity of a task.

• Small: The smaller the User Story, the simpler and clearer it will be. The student
gains confidence.

• Testable: For each User-Story, objective test criteria must be put in place to verify that
the knowledge assimilated is correct.

Finally, the User-Stories can be completed in the project book with all the required
information to develop the relative components in a more or less guided way.

In the context of a course, a User-Story will also represent the instantiation of pedagog-
ical objective(s). This objective could clearly be established for the students on the “goal of
the action”. The User-Story division allows the teacher to follow the comprehension of the
students as much as possible.

In fact, the User-Story is a central element of and A.L.P.E.S. approaches, because it
allows a teacher to reengineer a course in terms of its actual application.

3.4. Roles

Roles permit differentiating actors and responsibilities in SCRUM project development.
The kind of role an actor has is directly connected to the position of the person relatively
to the project (developers, stakeholder, hierarchical supervisor, etc.). Classical project
management is relaying on a unique project manager and this vision is common among
the students who aim to become project managers. Attributing roles permits the students
to apprehend the first distribution of the work and the responsibilities over the team.

Developers: All the members of the group working on developing the project. Each of
them can share a second role in the following.

Scrum Master: He is responsible for the good application of the rules governing the
developers. Technically, he presides the different sessions of the development process
(Stand-up Meeting, Sprint Planning, Sprint Review), he maintains the different charts
and other tools permitting self-evaluation and self-organization of the group.

Product Owner: He would be the main interface with the outside world and typically the
stakeholder in software development. If he is not a necessary part of the developers,
he would be available to clarify any point in the User-Story to develop. Generally, the
Product Owner maintains the Backlog Product.

Outsiders: This category regroups the actors outside of the group of developers, mainly
composed of helpers. It includes naturally the stakeholder, resource people (tester,
evaluator, expert). Evaluator is naturally played at some point by teachers, but takes
benefit to be attributed to students. Evaluators provide a critical review over the
achieved work from a global point of view or over a specific aspect of the project.
Their presence highlights the necessity to document development and to provide
working demonstrations and it helps for the dissemination of good ideas.



Educ. Sci. 2021, 11, 267 7 of 17

3.5. Good Practices

Agile Software Development provides a favourable environment to experiment some
practices. Many of those practices can be qualified as ‘good practices’ considering the
speed of their propagation over the developers across the world. Beyond a presentation
of those practices to the students in order to prepare them for their future career, those
practices bring added value, in a pedagogical point of view.

Pair programming: “Pair programming is an agile software development technique in
which two programmers work together at one workstation. One, the driver, writes
code while the other, the observer or navigator, reviews each line of code as it is typed
in. The two programmers switch roles frequently.” [15]. It is interesting to present
how two students working together on a unique computer could be beneficial to
the project.

Test-driven development: The main ideas defining test-driven development is that tests
need to be set up before starting any development. It allows the students to ask
themselves the right questions regarding the piece of codes they are going to provide.
The tests clarify in which context the development would be used and define precisely
how the developed element would be called. Furthermore, by frequently performing
tests (at least one test per User-Story) the students are capable of identifying problems
before to accumulate too many mistakes in their project advancement.

Versioning: It consists of fixing project advancement steps. It allows the developers to
safely backtrack at any saved project advancement step, possibly in parallel timelines
(branches). As a first result, it permits the students to backtrack to a working version
for a demonstration, at any time. Through this mechanism it is also interesting to
visualize the evolution of demonstrations. As a second result, versioning helps the
students working on shared resources. Through this tool, they learn to alternate
development sessions performed in parallel and merge.

3.6. Tools in Agile Teaching

Agile software development was created over four values [1] starting with “individu-
als and interactions over processes and tools”. In a learning case, individuals are mainly the
students, and it is more about agile teaching of software development than agile software
development, but the spirit remains intact. The aim of the tools is to help the students to
increase their competencies both in course notions and in software development. For the
teachers, it is more about providing a frame for the course definition and management.

Each teacher can adapt those tools to his/her own teaching skill and in fact, the same
teacher can use them with different modalities depending on the courses, the students or
the context. Those modalities could even evolve during the course.

Generally, the central question is about the level of autonomy the teachers want to
grant the students. Who plays the different roles? Who decides the User-Stories to tackle
during each sprint? Who defines the User-Stories?

The secondary question is about the concrete solution to provide for each tool. For
instance, the first solution for boards, is to use real boards that require a certain logistics
in a teaching environment. A second solution is to use digital solutions (files in a shared
repository, online board services, etc.) that require computing manipulations before to
visualize and modify it. Whatever the design of digital solutions, their usage would remain
less intuitive and natural than pens and papers.

4. Presentation of the A.L.P.E.S. Processes

A.L.P.E.S. consists of two very distinct processes that we have modelled just below in
flow diagrams. We have identified two processes: the first is the process describing the
conduct of a course, i.e. a set of sessions with identified pedagogical objectives. The second
process is the process of creating a course in A.L.P.E.S. format.



Educ. Sci. 2021, 11, 267 8 of 17

In this section, a focus is made on a teacher gathering all the responsibility. In fact,
even if the teachers plan to empower the students on their project management, it is
suggested to prepare the course as if not. This way, the teachers would have an idea of the
overall coherence between a project, a possible set of User-Stories, a planning board and
their usage in the course’s session.

4.1. Course Session Process

A course session is organized in three parts: (i) the beginning of the session, where the
teacher organizes the objectives and students organize their time, (ii) during the session is
how to organize the current session, (iii) after the session, where the teacher prepares the
next session based on the student feedback.

Figure 3 shows the process as it should be executed. Each task has a goal, inputs and
outputs, and participants. In each task, there is the letter T (teacher) or S (Student) to show
who is the participant to the task.

After a session

Beginning of a session

During a session

end of course
T

call for help
S

definition of sprint 
objectives (planning 

board)

T

sprint reorganisation
T

validation of the US
S

execution of a User 
Story (US)

S

task board organization
S

feedback from previous 
session

S

session's feedback
S

work on the lock-up
T / S

choice of a personal or 
group explanation

T / S

Figure 3. Process of an A.L.P.E.S. session (S for Student and T for Teacher).

4.1.1. Beginning of a Session

This group of tasks is the organization of the session. It should take 5 or 10 min.

• Definition of sprint objectives (planning board):

. The objective of this task is to explain to the students what they will achieve during
the session. This task is supported by the planning board, presented below.

. As input to the task, we take the planning board from the course creation process
(presented in the next section).

. The output is a set of User Stories that the students will have to complete.

. The actor is the professor. The students follow the instructions.

• Feedback from previous sessions:



Educ. Sci. 2021, 11, 267 9 of 17

. Once the students have a vision of the User Stories to be carried out, they will
make the link with the knowledge and skills acquired in the previous sessions.
This is the moment when the feedback from the previous session is given. We
also analyse the charts (presented in Section 3.2). This feedback is interesting at
this time because it allows connecting the sessions together and to re-mobilize
previously acquired knowledge and skills.

. The input of this task is the set of User Stories to be performed during the session.
From the point of view of tools, this represents a column of the planning board.

. The output is the same to-do list as the input.

. The actors are the students. Their activity during this phase is indispensable for the
proper consolidation of knowledge. The teacher is on hand to answer questions.

• Task board organization:

. All the students select the User Stories to be done in the column corresponding to
the session of the day, and place this list in the task board, in the “To do” column.
In this list are also added to the User Stories that have not been completed during
the previous session.

. The input of this task is the set of User Stories in a column of the planning board.

. The output is the task board ready to be used for the session.

. The actors are the students.

4.1.2. During a Session

• Execution of a User Story:

. The student chooses a task from the “To do” column of the task board, and places
it in the “Doing” column. As the tasks are independent, he can choose the one he
wants, knowing that all of them will have to be finalized. He’s directing the user
story. When he has finished, he can validate the User Story (next task). If he has a
problem, he asks for help by placing the User Story in the “Need help” column.

. The input is the task board in the following configuration: the “To do” column
contains User Stories. The “Doing” column is empty. The "Done" column can
contain tasks that have already been completed.

. The output is the Taskboard with a User Story placed either in the “Doing” column
or in the “Need help” column.

. The actors are the students.

• Validation of the User Story:

. The student validates the User Story. In other words, depending on the subject of
the course, the validation can be done either manually by the effective control of
the teacher, or by an automated process via unit tests in computer science.

. The input is the User Story previously made.

. The output is the updated Taskboard: either the User Story is validated and goes
in the “Done” column, or it is not validated and needs to be reworked.

. The actors are the students.

• Session’s feedback:



Educ. Sci. 2021, 11, 267 10 of 17

. When all the User Stories in the “To do” column are moved to the “Done” column,
or when the end of the session has arrived, the students write the feedback
of what they have learned from the session. The feedback is organized in the
following way: “what I learned”, “what I don’t understand”, “what I solved”.
In addition, students take the opportunity to update their task board and their
updated planning board: The User stories in the “Done” column of the task board
are moved to the current session column of the planning board. The user stories
in the other columns switch to the next session column of the planning board.

In parallel, the students update the charts related to the project (presented in
Section 3.2).

. The input is the task board, up to date at the end of the session.

. The output is an empty task board, an updated planning board, updated charts.

. The actors are the students.

• Call for help:

. When a student is stuck in a User Story to be made, they can ask the teacher
for help through the task board. He/She can then start another User Story while
waiting for the teacher’s answers.

. The input is a User Story on which the student has difficulties.

. The output is an updated task board, with the User Story positioned in the
appropriate location.

. The actor is the student.

• Choice of a personal or group explanation :

. When the teacher looks at the students’ task boards, he/she will be able to identify
the different User Stories present in the “Need help” area of the task board. He will
be able to choose to give the necessary explanation either directly to the student
or to the whole group by triggering a “stand-up meeting” (see explanation in
Section 3).

. The input is a blocking User Story.

. The output is the updated Task Board.

. The actors are the teacher and the students.

• Work on the lock-up :

. The work on the Blocking User Story integrates the stand-up meeting, presented
in Section 3 or an exchange between the teacher and the students, and personal
work on the part of the student to resolve any misunderstandings.

. The input is the Task Board with the blocking task in the “Doing” column.

. The output is the Task Board with the blocking task in the “To Do”, “Doing”, or
“Done” column or in the “Need help” area.

. The actors are the teacher and the students.

4.1.3. After a Session

• It concerns the teacher’s adaptation of the different User Stories. He must then
move User Stories on the planning board, either moving them forward or backward
according to the progress of the students. It can also add User Stories that seem
necessary to improve pedagogy and the delivery of skills.



Educ. Sci. 2021, 11, 267 11 of 17

• The input is the session feedback. It is therefore a qualitative evaluation via this
feedback and a quantitative evaluation via the analysis of the task boards that the
teacher must carry out.

• The output is an updated planning board. It will be used for the next session.

• The actor is the teacher.

4.1.4. End of the Course

• As for the “Sprint reorganization” task previously presented, it concerns the adap-
tation by the teacher of the different User Stories according to a qualitative and
quantitative evaluation. It leads to update each column of the planning board for the
next class. Thus, from year to year, the teacher capitalizes and can refine his courses
by being as close as possible to the needs of the students.

• The input is the feedback from the session and the modified planning board through-
out the course.

• The output is an updated schedule board.

• The actor is the teacher.

4.2. Course Creation Process

Before a course session, the teacher has to create his course. This process is composed
of five tasks that we define in this section. Figure 4 shows the process as it should be
executed. Each task has a goal, inputs and outputs, and a participant. In this process, only
the teacher (T) is involved.

creation of the planning 
board

T
consistency check

T

creation/adaptation of 
User Stories

Torganization of 
pedagogical objectives 

in SMART

T
def ning pedagogical 

objectives

T

Figure 4. Process of an A.L.P.E.S. session creation.

4.2.1. Defining Pedagogical Objectives

• In this task, the teacher defines the different pedagogical objectives of the course. It
must have 1 to 2 pedagogical objectives per session.

• The input is the name of a course.

• The output is a list of pedagogical objectives.

4.2.2. Organization of Pedagogical Objectives in S.M.A.R.T.

• In this task, the teacher describes his/her pedagogical objectives in a S.M.A.R.T. way:

. Simple: the student must have the means to achieve it. Simplicity is synonymous
with efficiency. Complexity slows or even blurs learning.

. Measurable: an objective can only exist if it is measurable. This characteristic will
then make it possible to evaluate the result in terms of outcome, and also in terms
of knowledge acquisition.



Educ. Sci. 2021, 11, 267 12 of 17

. Ambitious: in order to get the student involved, the objective to be achieved
must require a learning effort. It must also be accepted, i.e. the student must
understand why he or she must achieve the goal.

. Realistic: If the goal is perceived by the student as impossible to achieve, he or
she may become discouraged.

. Time-bound: The objective must be achieved within a reasonable period of time.
That is to say that during a session, students should be able to achieve 1 to 2
pedagogical objectives.

• The input is a list of learning objectives.

• The output is a list of S.M.A.R.T. pedagogical objectives.

4.2.3. Creation/Adaptation of the User Stories

• Once the pedagogical objectives have been defined, the teacher can break them down
into User Stories (presented in Section 3) while keeping the S.M.A.R.T. objectives. The
S.M.A.R.T. characteristics are the same as before, except for the time-bound, which is
defined as follows:

Time-bound: The objective must be achieved within a reasonable period of time. The
25-min time-box is a good way to keep up with the students’ pace and have a simple
progress indicator.

• The input is a list of S.M.A.R.T. pedagogical objectives.

• The output is the Project-Book (presented in Section 3.1) listing the User Stories.

4.2.4. Consistency Check

• After constructing the list of User Stories, the teacher verifies that all user stories are
consistent and independent.

• The input is a list of the User Stories.

• The output is an updated list of the User Stories.

4.2.5. Creation of the Planning Board

• When all User Stories are created, the teacher can create the planning board (presented
in Section 3). He places the Users Stories in an order that allows him to advance
pedagogically while keeping the students motivated.

• The input is a list of the User Stories.

• The output is the planning board.

5. Case Study: Creating a Course with A.L.P.E.S. from Scratch

Starting with the courses of Database Management System, we saw that the method
was very efficient to help the students working on a computer science project [4,5]. In
March 2014, when came the idea to create a course of Swift Programming Language, it was
logical to initiate it using A.L.P.E.S. method. This section presents some feedback on this
setup of a new course. We also regroup in this section feedback from another case study
that concerns transforming an existing course to A.L.P.E.S.

5.1. Choice of the Subject, Creation of the User Stories

Compared to the adaptation of an existing course, going from a blank page to create
the course is the simplest version of the A.L.P.E.S. use. Having nothing, it is simple to find
a problem to solve that is interesting for the students (depend on the curriculum or on the
population), that could be solved incrementally, and that will allow the teacher to show
them the different aspects of the course (to acquire the targeted knowledge). Students have



Educ. Sci. 2021, 11, 267 13 of 17

previous knowledge related to the course; here they extend their knowledge on OOP by
using a graphical interface and tactile devices.

One simple choice was to implement a game. The chosen game is 2048, very simple
game to implement. The used development environment offers REPL (Read Eval Print
Loop), a graphical tool able to compile online some code and even display some interfaces.
In the first User Story, they use REPL to learn the language, its differences with Java that
they learn before, and all the use of Xcode, Apple’s development environment. The second
User Story is devoted to learning to create graphical interfaces with which you can interact
with gestures. In the third one, they start the creation of the cell class, the minimal entity of
the game, and then the fourth is on the creation of the game board. The implementation
of the rules is the fifth. Then, to motivate them, the last User Story is devoted to the
improvement of the game. Following the course, they will create a first version of the
game, that feels like one anyone can find on the web. What if now they add some features?
Saving the board between execution, allowing the person to cancel a movement, changing
the size of the board, creating some styles and decoration, all those things that they can ask
the teacher how to implement. Each year, some other documentation is created to answer
problems they could have.

5.2. Programming Knowledge

The first part of the project is the acquisition of minimal knowledge to be able to do
something in the course: using the development environment and learn the programming
language. This part is done fully online, using the flipped class model. They learn and they
test at the same time and interact with the teacher when there are some points that are not
clear. When a point is problematic for everyone, it is shared with all the class.

5.3. The Project Itself, Interaction with the Students

During the creation of their game project, they will use their board to represent their
progression in the US, and they will, as in the first part, ask questions when there are.
Globally, over the years, we have very interesting projects, ideas and the slides can be
completed with new ideas that come to them. The projects that are evaluated are very good
and the implication of the students is real.

We have to note that this course has been created in February 2015, the first-year of the
language, with tools that were bugged. The use of the A.L.P.E.S. method made the course
easier to handle with the different questions of the student raised by the bugs.

5.4. Students Feedback–Comparison with the Second-Year Course

After this course, in the following year, there is a second course of mobile development
for iOS that is done by the same teacher. In this second course, another language is learnt,
but the same interface is used. For those who follow the two courses, they largely prefer
the A.L.P.E.S. one (the second course is more classical with a teaching part, exercises and
labs). They have better comprehension of the language, they can do things quicker. And
this feeling and feedback from the student are present since the beginning of the course.

5.5. Covid-19 Course Execution Style: Going with A.L.P.E.S. Methods Virtual

In March 2020, Covid-19 troubled the teaching all around the world. For France,
universities were closed, and all the teaching went in distance learning mode. It was a very
good experience for our knowledge of A.L.P.E.S. What happens for such course when it
goes online? Is it simpler or harder to handle than a classic course? Equipped with Zoom
and giving them a virtual machine to work, this experience was amazingly simple. All
the A.L.P.E.S. implementation of this course makes it “simple” to follow with the teacher
out. Creating on-the-fly rooms to answer questions individually as when we come to the
student were sufficient. The project, in this setup, could not be on iOS as it needs a Mac
to execute, it was a command-line games type on Linux. In the final, I had lots amazing
projects, showing that they understood and also that they worked hard.



Educ. Sci. 2021, 11, 267 14 of 17

6. Feedback from Courses Transformation Experiences

We regroup in this section feedback from teachers in the process of transforming their
courses into agile-project-based courses using A.L.P.E.S.: one course for the second-year
undergraduate and another for the third-year undergraduate.

6.1. About Adapting and Personalizing the Process

A.L.P.E.S. is a rich approach with several concepts and tools. It is clear that teachers
with experience in teaching with A.L.P.E.S. will have a higher level of mastery of its tools
and concepts and better ability to adapt the process to their needs and to their student level.

For the third-year undergraduate, a course on Statistics and probabilities with R is
proposed. The students were given the liberty to propose their own user stories following
a list of conditions to respect. For the second-year undergraduate students, user stories
are prepared by the teacher. A list of must do user stories are assigned for each session.
To give some liberty for well-advanced students and more experience in autonomy for
seeking information, a list of bonus user stories (ordered by difficulty) is provided to the
class. Once they must do user stories are done, students can choose and add bonus user
stories to their planning board.

For these courses, the incremental development cycle is respected with an iteration
over each user story that includes the following steps (based on the spiral SCRUM):

• Seeking information: learn how to look for needed information to realize the user story.

• The conception or the modelling of the solution.

• Implementation of the solution.

• Testing and validation of the solution.

6.2. On the Choice of the Project Subject

The project should be considered as the spine for notion learning (hard and soft
notions) for the entire course. Choosing the subject of this project must be given the
necessary time. Here are some points to keep in mind during this process:

• Choose an attractive subject for all students or the majority of them.

• Choose an accessible subject: understanding the project subject and its purpose must
not be an issue or reason for complexity.

• Easily divided in small accessible and comprehensible functionalities (user stories).

• The functionalities must be rich and numerous enough to cover all the notions (hard
ones), potentially several user stories per notion.

The proposed project for the course of statistics is to analyse the logs of 1000 matches
of a video game. Very positive feedback came back from the students on the course. The
project subject had a very important positive effect on their motivation.

6.3. Flipped Classroom

Lots of benefits comes from the flipped classroom approaches [18]. The idea is for
students to have the possibility to study the content on their own pace. The time shared
with the teacher is for focusing on complex notions. Also, this will allow more time to
exchange between students (and with the teacher) to open the horizon on the subject.
The theoretical content can be transmitted in full to the students prior to the beginning
of the first session. In this case, it can be considered as one of the resources for seeking
needed information when achieving user stories all along the courses’ sessions. However,
in courses for undergraduate students, sending the theoretical content in full at once might
be heavy on the students. The content, in this case, can be transmitted in smaller quantities
before each session while focusing the transmitted content to the applied notions in the
session in question.



Educ. Sci. 2021, 11, 267 15 of 17

6.4. Interaction and Feedback

• Interaction with students and collect their feedback: It is important to take into account
this feedback to adapt the content of the course to better answer to the needs and
capacities of the students. However, this should not cause incoherence in the evolution
of the sessions. Some modifications are better to be noted for the next iteration of the
course.

• Interaction with the other teachers, especially those responsible for courses where
prerequisite notions are presented. Communication on what notions to concentrate
on and what to take for granted is important information during the creation of the
course, the user stories and the bonus user stories (that can be used as revision work
for those in need).

7. Conclusions

In this article, we have presented the process of building a course in A.L.P.E.S. In
previous articles [4,5], we discussed the implementation of the approach and the feedback
from the students. This article consolidates the implementation of A.L.P.E.S.

In the short term, we would like to compare A.L.P.E.S. with other approaches, by
carrying out studies on the most receptive subjects or student levels. Our long-term goal is
to model the approach with an ontology.

The approach comes from the field, like all agile approaches. The next step is to model
the principles in order to be able to share and exploit the project books. The objective is
to share and instantiate courses according to the profile of the students, the pedagogical
objectives, by questioning a knowledge base shared between the actors of the A.L.P.E.S.
approach. The construction of an ontological knowledge base is a step which seems to
us indispensable.

We built the A.L.P.E.S. approach by investigating the different principles and the
different tools inherent to agile methods (cf. Section 3) through the investigation of
pedagogical objectives.

We have classified them according to their intrinsic properties and the pedagogical
objectives they give rise to. These classes, which we call “Principles” (cf. Figure 5), thus
enable us to organize the structuring of the A.L.P.E.S. approach and condition the processes
capable of being implemented for the development of A.L.P.E.S. courses.

Figure 5. Course Definition Model.



Educ. Sci. 2021, 11, 267 16 of 17

In our work so far, we have been able to identify three main classes, namely (1) Time
principles, (2) Monitoring principles, and (3) Role Principle, from the agile objects we have
studied. Consequently, a course in the sense of A.L.P.E.S. is composed of a set of ele-
ments coming from the different classes of principles identified. Nevertheless, it is not
excluded that as agile methods and practices evolve, new classes may appear, enriching
the expressivity and possibilities of A.L.P.E.S.

This definition provides us with a framework for establishing the minimum conditions
for belonging to the A.L.P.E.S. paradigm and, incidentally, that the approach we present is
generally exploitable there.

We have not discussed here either the emerging specificities related to these processes,
or their alterations, when a specific subset of principles is chosen to define a course. Rather,
we have focused on identifying and defining the processes enabled by the full use of agile
methods in a pedagogical framework.

Author Contributions: J.L. and M.V. created and designed the A.L.P.E.S. approach and wrote the
previous articles. In this article, they describe the approach and define the processes. A.B.K., R.P., A.F.
and G.L. applied the A.L.P.E.S. approach in their courses, had multiple feedback and adaptation of
the method and tools during their different courses and were implicated in the improvement of the
model based on these feedback. A.L. and G.L. defined the A.L.P.E.S. model. All authors have read
and agreed to the published version of the manuscript.

Funding: This research and the Article Processing Charges was funded by APACHES, an I-SITE
ULNE project, grant number FIPE18-007-VERMEULEN.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Beck, K.; Beedle, M.; Van Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler, M.; Grenning, J.; Highsmith, J.; Hunt, A.;

Jeffries, R.; et al. Manifesto for Agile Software Development. Technical Report, 2001. Available online: https://agilemanifesto.org/
(accessed on 27 May 2021).

2. Forsberg, K.; Mooz, H. The Relationship of System Engineering to the Project Cycle. INCOSE Int. Symp. 1991, 1, 57–65. [CrossRef]
3. Schwaber, K.; Beedle, M. Agile Software Development with Scrum; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 1.
4. Vermeulen, M.; Fleury, A.; Fronton, K.; Laval, J. LES ALPES: Approches agiles pour l’enseignement supérieur. In Proceedings of

the Colloque Questions de Pédagogies dans l’Enseignement Supérieur (QPES 2015), Brest, France, 17–19 June 2015; pp. 243–248.
5. Vermeulen, M.; Laval, J.; Serpaggi, X.; Pinot, R. Soyez agiles dans les ALPES! Une pédagogie en mode agile. In Proceedings of

the Colloque Questions de Pédagogie dans l’Enseignement Supérieur (QPES 2017), Grenoble, France, 13–16 June 2017.
6. John, W.; Thomas, W. A Review of Research on Project-Based Learning; The Autodesk Foundation: San Rafael, CA, USA, 2000.
7. Karabulut-Ilgu, A.; Jaramillo Cherrez, N.; Jahren, C.T. A systematic review of research on the flipped learning method in

engineering education. Br. J. Educ. Technol. 2018, 49, 398–411. [CrossRef]
8. Kingston, S. Project Based Learning & Student Achievement: What Does the Research Tell Us? PBL Evidence Matters; Buck Institute

for Education: Novato, CA, USA, 2018; Volume 1.
9. Highsmith, J.; Cockburn, A. Agile software development: The business of innovation. Computer 2001, 34, 120–127. [CrossRef]
10. Paasivaara, M.; Heikkilä, V.; Lassenius, C.; Toivola, T. Teaching students scrum using LEGO blocks. In Proceedings of the

Companion 36th International Conference on Software Engineering, New York, NY, USA, May 2014; pp. 382–391.
11. Ouitre, F.; Lambert, J.L. Le lego4scrum, un dispositif agile pour enseigner le management de projet-Innovation Pédagogique. In

Proceedings of the Colloque Questions de Pédagogie pour l’Enseignement Supérieur (QPES 2015), Brest, France, 21 June 2015.
12. Mahnič, V. Scrum in software engineering courses: An outline of the literature. Glob. J. Eng. Educ. 2015, 17, 77–83.
13. Bishop, J.L.; Verleger, M.A. The flipped classroom: A survey of the research. In Proceedings of the ASEE National Conference

Proceedings, Atlanta, GA, USA, 22 June 2013; Volume 30, pp. 1–18.
14. Jonnaert, P. Compétences et Socioconstructivisme: Un Cadre Théorique; Groue De Boech: Bruxelles, Belgium, 2009.
15. McDowell, C.; Werner, L.; Bullock, H.; Fernald, J. The effects of pair-programming on performance in an introductory program-

ming course. In Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science Education, New York, NY, USA,
February 2002; pp. 38–42.

https://agilemanifesto.org/
http://doi.org/10.1002/j.2334-5837.1991.tb01484.x
http://dx.doi.org/10.1111/bjet.12548
http://dx.doi.org/10.1109/2.947100


Educ. Sci. 2021, 11, 267 17 of 17

16. Sutherland, J.; Schwaber, K. The Scrum Guide. In The Definitive Guide to Scrum: The Rules of the Game. Available online:
https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf (accessed on 27 May 2021).

17. Cirillo, F. The Pomodoro Technique; Creative Commons: San Francisco, CA, USA, 2009.
18. Butt, A. Student views on the use of a flipped classroom approach: Evidence from Australia. Bus. Educ. Accredit. 2014, 6, 33–43.

https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

	Introduction
	Context
	Project-Based Learning
	Agile Project Management
	Agile Approaches in Higher Education

	A.L.P.E.S. through Agile Notions and Tools
	Time Decomposition
	Project Monitoring
	User-Story
	Roles
	Good Practices
	Tools in Agile Teaching

	Presentation of the A.L.P.E.S. Processes
	Course Session Process
	Beginning of a Session
	During a Session
	After a Session
	End of the Course

	Course Creation Process
	Defining Pedagogical Objectives
	Organization of Pedagogical Objectives in S.M.A.R.T.
	Creation/Adaptation of the User Stories
	Consistency Check
	Creation of the Planning Board


	Case Study: Creating a Course with A.L.P.E.S. from Scratch
	Choice of the Subject, Creation of the User Stories
	Programming Knowledge
	The Project Itself, Interaction with the Students
	Students Feedback–Comparison with the Second-Year Course
	Covid-19 Course Execution Style: Going with A.L.P.E.S. Methods Virtual

	Feedback from Courses Transformation Experiences
	About Adapting and Personalizing the Process
	On the Choice of the Project Subject
	Flipped Classroom
	Interaction and Feedback

	Conclusions
	References

